The Transit of Venus

smile
The jolly gentleman who I use in this icon is the great Irish astronomer Sir Robert Stawell Ball, probably the best known populariser of astronomy in the British Empire (and possibly America too) of the later Victorian era; he was Astronomer Royal for Ireland from 1874 to 1892, and then director of the Cambridge Observatory until his death in 1913. I had the great pleasure of going through his archives while doing my M Phil back in the summer of 1991. In his best-selling book, The Story of the Heavens, he has quite a long section on the 1882 transit of Venus; and since there won't be a more appropriate evening to post it for another 105 years, this is what he had to say about the one before last.
I venture to record our personal experience of the last transit of Venus, which we had the good fortune to view from Dunsink Observatory on the afternoon of the 6th of December, 1882.

The morning of the eventful day appeared to be about as unfavourable for a grand astronomical spectacle as could well be imagined. Snow, a couple of inches thick, covered the ground, and more was falling, with but little intermission, all the forenoon. It seemed almost hopeless that a view of the phenomenon could be obtained from that observatory; but it is well in such cases to bear in mind the injunction given to the observers on a celebrated eclipse expedition. They were instructed, no matter what the day should be like, that they were to make all their preparations precisely as they would have done were the sun shining with undimmed splendour. By this advice no doubt many observers have profited; and we acted upon it with very considerable success.

There were at that time at the observatory two equatorials, one of them an old, but tolerably good, instrument, of about six inches aperture; the other the great South equatorial, of twelve inches aperture, already referred to. At eleven o'clock the day looked worse than ever; but we at once proceeded to make all ready. I stationed Mr. Rambaut at the small equatorial, while I myself took charge of the South instrument. The snow was still falling when the domes were opened; but, according to our prearranged scheme, the telescopes were directed, not indeed upon the sun, but to the place where we knew the sun was, and the clockwork was set in motion which carried round the telescopes, still constantly pointing towards the invisible sun. The predicted time of the transit had not yet arrived.

The eye-piece employed on the South equatorial must also receive a brief notice. It will, of course, be obvious that the full glare of the sun has to be greatly mitigated before the eye can view it with impunity. The light from the sun falls upon a piece of transparent glass inclined at a certain angle, and the chief portion of the sun's heat, as well as a certain amount of its light, pass through the glass and are lost. A certain fraction of the light is, however, reflected from the glass, and enters the eye-piece. This light is already much reduced in intensity, but it undergoes as much further reduction as we please by an ingenious contrivance. The glass which reflects the light does so at what is called the polarising angle, and between the eye-piece and the eye is a plate of tourmaline. This plate of tourmaline can be turned round by the observer. In one position it hardly interferes with the polarised light at all, while in the position at right angles thereto it cuts off nearly the whole of it. By simply adjusting the position of the tourmaline, the observer has it in his power to render the image of any brightness that may be convenient, and thus the observations of the sun can be conducted with the appropriate degree of illumination.

But such appliances seemed on this occasion to be a mere mockery. The tourmaline was all ready, but up to one o'clock not a trace of the sun could be seen. Shortly after one o'clock, however, we noticed that the day was getting lighter; and, on looking to the north, whence the wind and the snow were coming, we saw, to our inexpressible delight, that the clouds were clearing. At length, the sky towards the south began to improve, and at last, as the critical moment approached, we could detect the spot where the sun was becoming visible. But the predicted moment arrived and passed, and still the sun had not broken through the clouds, though every moment the certainty that it would do so became more apparent. The external contact was therefore missed. We tried to console ourselves by the reflection that this was not, after all, a very important phase, and hoped that the internal contact would be more successful.

At length the struggling beams pierced the obstruction, and I saw the round, sharp disc of the sun in the finder, and eagerly glanced at the point on which attention was concentrated. Some minutes had now elapsed since the predicted moment of first contact, and, to my delight, I saw the small notch in the margin of the sun showing that the transit had commenced, and that the planet was then one-third on the sun. But the critical moment had not yet arrived. By the expression "first internal contact" we are to understand the moment when the planet has completely entered on the sun. This first contact was timed to occur twenty-one minutes later than the external contact already referred to. But the clouds again disappointed our hope of seeing the internal contact. While steadily looking at the exquisitely beautiful sight of the gradual advance of the planet, I became aware that there were other objects besides Venus between me and the sun. They were the snowflakes, which again began to fall rapidly. I must admit the phenomenon was singularly beautiful. The telescopic effect of a snowstorm with the sun as a background I had never before seen. It reminded me of the golden rain which is sometimes seen falling from a flight of sky-rockets during pyrotechnic displays; I would gladly have dispensed with the spectacle, for it necessarily followed that the sun and Venus again disappeared from view. The clouds gathered, the snowstorm descended as heavily as ever, and we hardly dared to hope that we should see anything more; 1 hr. 57 min. came and passed, the first internal contact was over, and Venus had fully entered on the sun. We had only obtained a brief view, and we had not yet been able to make any measurements or other observations that could be of service. Still, to have seen even a part of a transit of Venus is an event to remember for a lifetime, and we felt more delight than can be easily expressed at even this slight gleam of success.

But better things were in store. My assistant came over with the report that he had also been successful in seeing Venus in the same phase as I had. We both resumed our posts, and at half-past two the clouds began to disperse, and the prospect of seeing the sun began to improve. It was now no question of the observations of contact. Venus by this time was well on the sun, and we therefore prepared to make observations with the micrometer attached to the eye-piece. The clouds at length dispersed, and at this time Venus had so completely entered on the sun that the distance from the edge of the planet to the edge of the sun was about twice the diameter of the planet. We measured the distance of the inner edge of Venus from the nearest limb of the sun. These observations were repeated as frequently as possible, but it should be added that they were only made with very considerable difficulty. The sun was now very low, and the edges of the sun and of Venus were by no means of that steady character which is suitable for micrometrical measurement. The margin of the luminary was quivering, and Venus, though no doubt it was sometimes circular, was very often distorted to such a degree as to make the measures very uncertain.

We succeeded in obtaining sixteen measures altogether; but the sun was now getting low, the clouds began again to interfere, and we saw that the pursuit of the transit must be left to the thousands of astronomers in happier climes who had been eagerly awaiting it. But before the phenomena had ceased I spared a few minutes from the somewhat mechanical work at the micrometer to take a view of the transit in the more picturesque form which the large field of the finder presented. The sun was already beginning to put on the ruddy hues of sunset, and there, far in on its face, was the sharp, round, black disc of Venus. It was then easy to sympathise with the supreme joy of Horrocks, when, in 1639, he for the first time witnessed this spectacle. The intrinsic interest of the phenomenon, its rarity, the fulfilment of the prediction, the noble problem which the transit of Venus helps us to solve, are all present to our thoughts when we look at this pleasing picture, a repetition of which will not occur again until the flowers are blooming in the June of A.D. 2004.
I wonder if this blog entry will be read by someone in 2117?

Ball concludes this section:
It may be asked, what is the advantage of devoting so much time and labour to a celestial phenomenon like the transit of Venus which has so little bearing on practical affairs? What does it matter whether the sun be 95,000,000 miles off, or whether it be only 93,000,000, or any other distance? We must admit at once that the enquiry has but a slender bearing on matters of practical utility. No doubt a fanciful person might contend that to compute our nautical almanacs with perfect accuracy we require a precise knowledge of the distance of the sun. Our vast commerce depends on skilful navigation, and one factor necessary for success is the reliability of the "Nautical Almanac." The increased perfection of the almanac must therefore bear some relation to increased perfection in navigation. Now, as good authorities tell us that in running for a harbour on a tempestuous night, or in other critical emergencies, even a yard of sea-room is often of great consequence, so it may conceivably happen that to the infinitesimal influence of the transit of Venus on the "Nautical Almanac" is due the safety of a gallant vessel.

But the time, the labour, and the money expended in observing the transit of Venus are really to be defended on quite different grounds. We see in it a fruitful source of information. It tells us the distance of the sun, which is the foundation of all the great measurements of the universe. It gratifies the intellectual curiosity of man by a view of the true dimensions of the majestic solar system, in which the earth is seen to play a dignified, though still subordinate, part; and it leads us to a conception of the stupendous scale on which the universe is constructed.
I'm sorry to report that Ball lost all sight in his right eye in 1883, shortly after the solar observations which he records here in such detail. I hope that this was just a coincidence; it certainly encouraged him to develop the writing career which made his name.

Tags:

Comment Form

No HTML allowed in subject

  
 
   
 

Notice! This user has turned on the option that logs your IP address when posting. 

(will be screened)

Latest Month

July 2014
S M T W T F S
  12345
6789101112
13141516171819
20212223242526
2728293031  

Tags

Powered by LiveJournal.com
Designed by yoksel